满分5 > 高中数学试题 >

已知在平面直角坐标系xOy内,点P(x,y)在曲线C:为参数,θ∈R)上运动.以...

已知在平面直角坐标系xOy内,点P(x,y)在曲线C:manfen5.com 满分网为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为manfen5.com 满分网
(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值.
(1)先将原极坐标方程利用三角函数的和角公式后再化成直角坐标方程,再利用消去参数θ得到曲线C的直角坐标方程. (2)欲求△ABM面积的最大值,由于AB一定,故只要求AB边上的高最大即可,根据平面几何的特征,当点M在过圆心且垂直于AB的直线上时,距离AB最远,据此求面积的最大值即可. 【解析】 (1)消去参数θ,得曲线C的标准方程:(x-1)2+y2=1. 由得:ρcosθ-ρsinθ=0, 即直线l的直角坐标方程为:x-y=0. (2)圆心(1,0)到直线l的距离为, 则圆上的点M到直线的最大距离 为(其中r为曲线C的半径),.设M点的坐标为(x,y), 则过M且与直线l垂直的直线l'方程为:x+y-1=0, 则联立方程, 解得,或, 经检验舍去. 故当点M为时,△ABM面积的最大值为(S△ABM)max=.
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB为直
径的圆,DC的延长线与AB的延长线交于点E.
(Ⅰ)求证:DC是⊙O的切线;
(Ⅱ)若EB=6,EC=6manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(3)斜率为k的直线与曲线y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:manfen5.com 满分网
查看答案
已知圆C1的方程为x2+(y-2)2=1,定直线l的方程为y=-1.动圆C与圆C1外切,且与直线l相切.
(Ⅰ)求动圆圆心C的轨迹M的方程;
(Ⅱ)斜率为k的直线m与轨迹M相切于第一象限的点P,过点P作直线m的垂线恰好经过点A(0,6),并交轨迹M与另一点Q,记S为轨迹M与直线PQ围成的封闭图形的面积,求S的值.
查看答案
如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥面CBB1
(Ⅰ)证明:DE∥面ABC;
(Ⅱ)若BB1=BC,求CA1与面BB1C所成角的正弦值.

manfen5.com 满分网 查看答案
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.