满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥...

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

manfen5.com 满分网
(1)由PA⊥平面ABCD,AC⊥BD可证得BD⊥平面PAC,从而证得BD⊥PC; (2)设AC∩BD=O,连接PO,由BD⊥平面PAC可得∠DPO是直线PD和平面PAC所成的角,于是∠DPO=30°,从而有PD=2OD,于是可证得△AOD,△BOC均为等腰直角三角形,从而可求得梯形ABCD的高,继而可求SABCD,VP-ABCD. 【解析】 (Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD, ∴PA⊥BD; 又AC⊥BD,PA,AC是平面PAC内的两条相交直线, ∴BD⊥平面PAC,而PC⊂平面PAC,∴BD⊥PC; (Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC, ∴∠DPO是直线PD和平面PAC所成的角, ∴∠DPO=30°, 由BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°得PD=2OD. ∵四边形ABCD是等腰梯形,AC⊥BD, ∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为AD+BC=×(4+2)=3, 于是SABCD=×(4+2)×3=9. 在等腰三角形AOD中,OD=AD=2, ∴PD=2OD=4,PA==4, ∴VP-ABCD=SABCD×PA=×9×4=12.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<manfen5.com 满分网)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数g(x)=f(x-manfen5.com 满分网)-f(x+manfen5.com 满分网)的单调递增区间.
查看答案
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量1至4件5至8件9至12件13至16件17件以上
顾客数(人)x3025y10
结算时间(分钟/人11.522.53
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
查看答案
对于n∈N*,将n表示为n=manfen5.com 满分网+…+manfen5.com 满分网,当i=k时,ai=1,当0≤i≤k-1时,ai为0或1.定义bn如下:在n的上述表示中,当a,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.
(1)b2+b4+b6+b8=   
(2)记cm为数列{bn}中第m个为0的项与第m+1个为0的项之间的项数,则cm的最大值是    查看答案
如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
如果执行如图所示的程序框图,输入x=4.5,则输出的数i=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.