满分5 > 高中数学试题 >

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2...

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.

manfen5.com 满分网
(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2-b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程; (Ⅱ)由(Ⅰ)知B1(-2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my-2,代入椭圆方程,消元可得(m2+5)y2-4my-16-0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求△PB2Q的面积. 【解析】 (Ⅰ)设椭圆的方程为,F2(c,0) ∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即 ∵c2=a2-b2,∴a2=5b2,c2=4b2,∴ 在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|= ∵S=4,∴b2=4,∴a2=5b2=20 ∴椭圆标准方程为; (Ⅱ)由(Ⅰ)知B1(-2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my-2 代入椭圆方程,消元可得(m2+5)y2-4my-16=0① 设P(x1,y1),Q(x2,y2), ∴, ∵, ∴= ∵PB2⊥QB2,∴ ∴,∴m=±2 当m=±2时,①可化为9y2±8y-16-0, ∴|y1-y2|== ∴△PB2Q的面积S=|B1B2||y1-y2|=×4×=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.
(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
查看答案
设函数f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=manfen5.com 满分网处取得最大值2,其图象与x轴的相邻两个交点的距离为manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=manfen5.com 满分网的值域.
查看答案
甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.设甲每次投篮投中的概率为manfen5.com 满分网,乙每次投篮投中的概率为manfen5.com 满分网,且各次投篮互不影响.
(Ⅰ)求乙获胜的概率;
(Ⅱ)求投篮结束时乙只投了2个球的概率.
查看答案
已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.
查看答案
已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通项公式
(Ⅱ)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.