登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知向量,,. (1)若,且,求证:O,A,B三点共线; (2)若,求向量与的夹...
已知向量
,
,
.
(1)若
,且
,求证:O,A,B三点共线;
(2)若
,求向量
与
的夹角θ范围.
(1)利用三角函数的平方关系及二倍角公式求出向量的坐标由,利用向量共线的充要条件得到O,A,B三点共线; (2)利用向量的数量积公式求出向量与的夹角θ的余弦用α的三角函数表示,根据,求出夹角θ范围. 【解析】 (1)∵,, ∴ ∴,.…(3分) ∴, ∴. ∴O,A,B三点共线,…(4分) (2)∵ =…(6分) ∵, ∴, 而θ∈[0,π], ∴ ∴θ的范围为.…(8分)
复制答案
考点分析:
相关试题推荐
由数字1,2,3,4组成五位数
,从中任取一个,则取出的数满足条件:“对任意的正整数j(1≤j≤5),至少存在另一个正整数k(1≤k≤5,且k≠j),使得a
j
=a
k
”的概率为
.
查看答案
某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点
是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是
.
查看答案
在x轴的正方向上,从左向右依次取点列 {A
j
},j=1,2,…,以及在第一象限内的抛物线
上从左向右依次取点列{B
k
},k=1,2,…,使△A
k-1
B
k
A
k
(k=1,2,…)都是等边三角形,其中A
是坐标原点,则第2011个等边三角形的边长是
.
查看答案
观察下列等式:(x
2
+x+1)
=1;(x
2
+x+1)
1
=x
2
+x+1;(x
2
+x+1)
2
=x
4
+2x
3
+3x
2
+2x+1;(x
2
+x+1)
3
=x
6
+3x
5
+6x
4
+7x
3
+6x
2
+3x+1;…;可能以推测,(x
2
+x+1)
5
展开式中,第五、六、七项的系数和是
.
查看答案
抛物线y
2
=2px(p>0)的一条弦AB过焦点F,且|AF|=1,
,则抛物线方程为
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.