以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.
【解析】
以D为原点,AB所在直线为x轴,建立如图坐标系,
∵AB是Rt△ABC的斜边,
∴以AB为直径的圆必定经过C点
设AB=2r,∠CDB=α,则
A(-r,0),B(r,0),C(rcosα,rsinα)
∵点P为线段CD的中点,
∴P(rcosα,rsinα)
∴|PA|2=+=+r2cosα,
|PB|2=+=-r2cosα,
可得|PA|2+|PB|2=r2
又∵点P为线段CD的中点,CD=r
∴|PC|2==r2
所以:==10
故选D