满分5 > 高中数学试题 >

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的1...

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量1至4件5 至8件9至12件13至16件17件及以上
顾客数(人)x3025y10
结算时间(分钟/人)11.522.53
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)
(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望; (Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且Xi(i=1,2)的分布列都与X的分布列相同,故可得结论. 【解析】 (Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20; 将频率视为概率可得P(X=1)==0.15;P(X=1.5)==0.3;P(X=2)==0.25;P(X=2.5)==0.2;P(X=3)==0.1 X的分布列  X  1  1.5  2  2.5  3  P  0.15  0.3  0.25  0.2  0.1 X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9 (Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则 P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1) 由于各顾客的结算相互独立,且Xi(i=1,2)的分布列都与X的分布列相同,所以 P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125 故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.
复制答案
考点分析:
相关试题推荐
设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前manfen5.com 满分网和后manfen5.com 满分网个位置,得到排列P1=x1x3…xN-1x2x4…xN
将此操作称为C变换,将P1分成两段,每段manfen5.com 满分网个数,并对每段作C变换,得到P2,当2≤i≤n-2时,将Pi分成2i段,每段manfen5.com 满分网个数,并对每段作C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.
(1)当N=16时,x7位于P2中的第    个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第    个位置. 查看答案
函数f(x)=sin (ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
(1)若φ=manfen5.com 满分网,点P的坐标为(0,manfen5.com 满分网),则ω=   
(2)若在曲线段manfen5.com 满分网与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为   
manfen5.com 满分网 查看答案
manfen5.com 满分网如果执行如图所示的程序框图,输入x=-1,n=3,则输出的数S=    查看答案
manfen5.com 满分网6的二项展开式中的常数项为    (用数字作答). 查看答案
已知复数z=(3+i)2(i为虚数单位),则|manfen5.com 满分网|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.