满分5 > 高中数学试题 >

某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件...

某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,; (2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解. 【解析】 (1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x) ∴,, 其中x,kx,200-(1+k)x均为1到200之间的正整数 (2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为 ∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x) ①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{} ∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x= ∵,,,f(44)<f(45) ∴x=44时,完成订单任务的时间最短,时间最短为 ②当k≥3时,T2(x)<T1(x), 记,为增函数,φ(x)=max{T1(x),T(x)} f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{} ∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x= ∵,, ∴完成订单任务的时间大于 ③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{} ∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x= 类似①的讨论,此时完成订单任务的时间为,大于 综上所述,当k=2时,完成订单任务的时间最短,此时,生产A,B,C三种部件的人数分别为44,88,68.
复制答案
考点分析:
相关试题推荐
已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,n=1,2,….
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

manfen5.com 满分网 查看答案
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量1至4件5 至8件9至12件13至16件17件及以上
顾客数(人)x3025y10
结算时间(分钟/人)11.522.53
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)
查看答案
设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前manfen5.com 满分网和后manfen5.com 满分网个位置,得到排列P1=x1x3…xN-1x2x4…xN
将此操作称为C变换,将P1分成两段,每段manfen5.com 满分网个数,并对每段作C变换,得到P2,当2≤i≤n-2时,将Pi分成2i段,每段manfen5.com 满分网个数,并对每段作C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.
(1)当N=16时,x7位于P2中的第    个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第    个位置. 查看答案
函数f(x)=sin (ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
(1)若φ=manfen5.com 满分网,点P的坐标为(0,manfen5.com 满分网),则ω=   
(2)若在曲线段manfen5.com 满分网与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.