满分5 > 高中数学试题 >

在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1...

在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x,y)(y≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.
(Ⅰ)设M的坐标为(x,y),根据对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值,可得|x+2|=且圆C2上的点位于直线x=-2的右侧,从而可得曲线C1的方程; (Ⅱ)当点P在直线x=-4上运动时,P的坐标为(-4,y),设切线方程为kx-y+y+4k=0,利用直线与圆相切可得,从而可得过P所作的两条切线PA,PC的斜率k1,k2是方程的两个实根,设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,从而可得;同理可得,由此可得当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值为6400. (Ⅰ)【解析】 设M的坐标为(x,y),由已知得|x+2|=且圆C2上的点位于直线x=-2的右侧 ∴=x+5 化简得曲线C1的方程为y2=20x (Ⅱ)证明:当点P在直线x=-4上运动时,P的坐标为(-4,y), ∵y≠±3,∴过P且与圆C2相切的直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为 y-y=k(x+4),即kx-y+y+4k=0, ∴,整理得① 设过P所作的两条切线PA,PC的斜率分别为k1,k2,则k1,k2是方程①的两个实根 ∴② 由,消元可得③ 设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4, ∴y1,y2是方程③的两个实根 ∴④ 同理可得⑤ 由②④⑤可得==6400 ∴当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值为6400.
复制答案
考点分析:
相关试题推荐
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
查看答案
已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,n=1,2,….
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

manfen5.com 满分网 查看答案
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量1至4件5 至8件9至12件13至16件17件及以上
顾客数(人)x3025y10
结算时间(分钟/人)11.522.53
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)
查看答案
设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前manfen5.com 满分网和后manfen5.com 满分网个位置,得到排列P1=x1x3…xN-1x2x4…xN
将此操作称为C变换,将P1分成两段,每段manfen5.com 满分网个数,并对每段作C变换,得到P2,当2≤i≤n-2时,将Pi分成2i段,每段manfen5.com 满分网个数,并对每段作C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.
(1)当N=16时,x7位于P2中的第    个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第    个位置. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.