满分5 > 高中数学试题 >

设f(x)=4cos(ωx-)sinωx-cos(2ωx+π),其中ω>0. (...

设f(x)=4cos(ωx-manfen5.com 满分网)sinωx-cos(2ωx+π),其中ω>0.
(Ⅰ)求函数y=f(x)的值域
(Ⅱ)若f(x)在区间manfen5.com 满分网上为增函数,求ω的最大值.
(I)由题意,可由三角函数的恒等变换公式对函数的解析式进行化简得到f(x)=sin2ωx+1,由此易求得函数的值域; (II)f(x)在区间上为增函数,此区间必为函数某一个单调区间的子集,由此可根据复合三角函数的单调性求出用参数表示的三角函数的单调递增区间,由集合的包含关系比较两个区间的端点即可得到参数ω所满足的不等式,由此不等式解出它的取值范围,即可得到它的最大值. 【解析】 f(x)=4cos(ωx-)sinωx-cos(2ωx+π) =4(cosωx+sinωx)sinωx+cos2ωx =2cosωxsinωx+2sin2ωx+cos2ωx-sin2ωx =sin2ωx+1, ∵-1≤sin2ωx≤1, 所以函数y=f(x)的值域是[] (II)因y=sinx在每个区间[],k∈z上为增函数, 令,又ω>0, 所以,解不等式得≤x≤,即f(x)=sin2ωx+1,(ω>0)在每个闭区间[,],k∈z上是增函数 又有题设f(x)在区间上为增函数 所以⊆[,],对某个k∈z成立, 于是有.解得ω≤,故ω的最大值是.
复制答案
考点分析:
相关试题推荐
甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为manfen5.com 满分网,乙每次投篮投中的概率为manfen5.com 满分网,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望.
查看答案
manfen5.com 满分网,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(Ⅰ) 求a的值;
(Ⅱ) 求函数f(x)的极值.
查看答案
某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为    (用数字作答). 查看答案
过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若manfen5.com 满分网,则|AF|=    查看答案
设△ABC的内角A,B,C的对边分别为a,b,c,且manfen5.com 满分网,则c=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.