满分5 > 高中数学试题 >

设集合Pn={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的...

设集合Pn={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:
①A⊆Pn;②若x∈A,则2x∉A;③若x∈manfen5.com 满分网A,则2x∉manfen5.com 满分网A.
(1)求f(4);
(2)求f(n)的解析式(用n表示).
(1)由题意可得P4={1,2,3,,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4) (2)任取偶数x∈pn,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求 解(1)当n=4时,P4={1,2,3,,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4} 故f(4)=4 (2)任取偶数x∈pn,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m, 于是x=m•2k,其中m为奇数,k∈N* 由条件可知,若m∈A,则x∈A,⇔k为偶数            若m∉A,则x∈A⇔k为奇数 于是x是否属于A由m是否属于A确定,设Qn是Pn中所有的奇数的集合 因此f(n)等于Qn的子集个数,当n为偶数时(或奇数时),Pn中奇数的个数是(或) ∴
复制答案
考点分析:
相关试题推荐
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
查看答案
A.[选修4-1:几何证明选讲]
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.
求证:∠E=∠C.
B.[选修4-2:矩阵与变换]
已知矩阵A的逆矩阵manfen5.com 满分网,求矩阵A的特征值.
C.[选修4-4:坐标系与参数方程]
在极坐标中,已知圆C经过点P(manfen5.com 满分网manfen5.com 满分网),圆心为直线ρsin(θ-manfen5.com 满分网)=-manfen5.com 满分网与极轴的交点,求圆C的极坐标方程.
D.[选修4-5:不等式选讲]
已知实数x,y满足:|x+y|<manfen5.com 满分网,|2x-y|<manfen5.com 满分网,求证:|y|<manfen5.com 满分网

manfen5.com 满分网 查看答案
已知各项均为正数的两个数列{an}和{bn}满足:an+1=manfen5.com 满分网,n∈N*
(1)设bn+1=1+manfen5.com 满分网,n∈N*,,求证:数列manfen5.com 满分网是等差数列;
(2)设bn+1=manfen5.com 满分网manfen5.com 满分网,n∈N*,且{an}是等比数列,求a1和b1的值.
查看答案
如图,在平面直角坐标系xOy中,椭圆manfen5.com 满分网(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知(1,e)和(e,manfen5.com 满分网)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1-BF2=manfen5.com 满分网求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.

manfen5.com 满分网 查看答案
若函数y=f(x)在x=x处取得极大值或极小值,则称x为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;
(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.