(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;
(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;
[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.
【解析】
(1)∵PA⊥底面ABCD,CD⊂底面ABCD,
∴CD⊥PA
∵矩形ABCD中,CD⊥AD,PA、AD是平面PDC内的相交直线
∴CD⊥平面PDA
∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形
∵Rt△PAD中,AD=2,PA=2,
∴PD==2
∴三角形PCD的面积S=×PD×DC=2
(2)[解法一]
如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1)
∴=(1,,1),=(0,2,0),
设与夹角为θ,则cosθ===
∴θ=,由此可得异面直线BC与AE所成的角的大小为
[解法二]
取PB的中点F,连接AF、EF、AC,
∵△PBC中,E、F分别是PC、PB的中点
∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角
∵Rt△PAC中,PC==4
∴AE=PC=4
∵在△AEF中,EF=BC=,AF=PB=
∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰Rt△
∴∠AEF=,可得异面直线BC与AE所成的角的大小为