由圆的方程找出圆心坐标和半径r,由直线l被圆截得的弦长与半径,根据垂径定理及勾股定理求出圆心到直线l的距离,然后再利用点到直线的距离公式表示出圆心到直线l的距离,两者相等列出关系式,整理后求出m2+n2的值,再由直线l与x轴交于A点,与y轴交于B点,由直线l的解析式分别令x=0及y=0,得出A的横坐标及B的纵坐标,确定出A和B的坐标,得出OA及OB的长,根据三角形AOB为直角三角形,表示出三角形AOB的面积,利用基本不等式变形后,将m2+n2的值代入,即可求出三角形AOB面积的最小值.
【解析】
由圆x2+y2=4的方程,得到圆心坐标为(0,0),半径r=2,
∵直线l与圆x2+y2=4相交所得弦CD=2,
∴圆心到直线l的距离d==,
∴圆心到直线l:mx+ny-1=0的距离d==,
整理得:m2+n2=,
令直线l解析式中y=0,解得:x=,
∴A(,0),即OA=,
令x=0,解得:y=,
∴B(0,),即OB=,
∵m2+n2≥2|mn|,当且仅当|m|=|n|时取等号,
∴|mn|≤,
又△AOB为直角三角形,
∴S△ABC=OA•OB=≥=3,
则△AOB面积的最小值为3.
故答案为:3