在平面直角坐标系xOy中,已知椭圆C:
的离心率
,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x
2+y
2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
考点分析:
相关试题推荐
设数列{a
n}的前n项和为S
n,满足
,且a
1,a
2+5,a
3成等差数列.
(1)求a
1的值;
(2)求数列{a
n}的通项公式;
(3)证明:对一切正整数n,有
.
查看答案
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E 在线段 PC 上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.
查看答案
某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.
查看答案
已知函数
(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设
,
,
,求cos(α+β)的值.
查看答案
(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与 O C 的延长线交于点P,则图PA=
.
查看答案