满分5 > 高中数学试题 >

设a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a...

设a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示);
(2)求函数f(x)=2x3-3(1+a)x2+6ax在D内的极值点.
(1)根据方程2x2-3(1+a)x+6a=0的判别式讨论a的范围,求出相应D即可; (2)由f'(x)=6x2-6(1+a)x+6a=0得x=1,a,然后根据(1)中讨论的a的取值范围分别求出函数极值即可. 【解析】 (1)记h(x)=2x2-3(1+a)x+6a(a<1) △=9(1+a)2-48a=(3a-1)(3a-9) 当△<0,即,D=(0,+∞) 当, 当a≤0, (2)由f'(x)=6x2-6(1+a)x+6a=0得x=1,a ①当,f(x)在D内有一个极大值点a,有一个极小值点 ②当,∵h(1)=2-3(1+a)+6a=3a-1≤0 h(a)=2a2-3(1+a)a+6a=3a-a2>0 ∴1∉D,a∈D ∴f(x)在D内有一个极大值点a ③当a≤0,则a∉D 又∵h(1)=2-3(1+a)+6a=3a-1<0 ∴f(x)在D内有无极值点
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知椭圆C:manfen5.com 满分网的离心率manfen5.com 满分网,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
查看答案
设数列{an}的前n项和为Sn,满足manfen5.com 满分网,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有manfen5.com 满分网
查看答案
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E 在线段 PC 上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.

manfen5.com 满分网 查看答案
某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,求cos(α+β)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.