满分5 > 高中数学试题 >

在等差数列{an}中,a3+a4+a5=84,a9=73. (Ⅰ)求数列{an}...

在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm
(I)由已知及等差数列的性质可求a4,由可求公差d,进而可求a1,进而可求通项 (II)由可得9m+8<9n<92m+8,从而可得,由等比数列的求和公式可求 【解析】 (I)∵数列{an}是等差数列 ∴a3+a4+a5=3a4=84, ∴a4=28 设等差数列的公差为d ∵a9=73 ∴==9 由a4=a1+3d可得28=a1+27 ∴a1=1 ∴an=a1+(n-1)d=1+9(n-1)=9n-8 (II)若 则9m+8<9n<92m+8 因此9m-1+1≤n≤92m-1 故得 ∴Sm=b1+b2+…+bm =(9+93+95+…+92m-1)-(1+9+…+9m-1) = =
复制答案
考点分析:
相关试题推荐
现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为manfen5.com 满分网,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为manfen5.com 满分网,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.
查看答案
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(sinx,1),manfen5.com 满分网=(manfen5.com 满分网Acosx,manfen5.com 满分网cos2x)(A>0),函数f(x)=manfen5.com 满分网manfen5.com 满分网的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象像左平移manfen5.com 满分网个单位,再将所得图象各点的横坐标缩短为原来的manfen5.com 满分网倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,manfen5.com 满分网]上的值域.
查看答案
如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,manfen5.com 满分网的坐标为   
manfen5.com 满分网 查看答案
设a>0,若曲线y=manfen5.com 满分网与直线x=a,y=0所围成封闭图形的面积为a2,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.