满分5 > 高中数学试题 >

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答...

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为manfen5.com 满分网,乙队中3人答对的概率分别为manfen5.com 满分网,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
(1)由题意甲队中每人答对的概率均为,故可看作独立重复试验,故, (2)AB为“甲、乙两个队总得分之和等于3”和“甲队总得分大于乙队总得分”同时满足,有两种情况:“甲得(2分)乙得(1分)”和“甲得(3分)乙得0分”这两个事件互斥,分别求概率,再取和即可. 【解析】 (Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且,,,. 所以ξ的分布列为 ξ的数学期望为. 解法二:根据题设可知,, 因此ξ的分布列为,k=0,1,2,3. 因为,所以. (Ⅱ)解法一:用C表示“甲得(2分)乙得(1分)”这一事件,用D表示“甲得(3分)乙得0分”这一事件,所以AB=C∪D,且C,D互斥,又=,, 由互斥事件的概率公式得. 解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,1,2,3. 由于事件A3B,A2B1为互斥事件,故有P(AB)=P(A3B∪A2B1)=P(A3B)+P(A2B1). 由题设可知,事件A3与B独立,事件A2与B1独立,因此P(AB)=P(A3B)+P(A2B1)=P(A3)P(B)+P(A2)P(B1)=.
复制答案
考点分析:
相关试题推荐
在城A的西南方向上有一个观测站B,在城A的南偏东15°的方向上有一条笔直的公路,一辆汽车正沿着该公路上向城A驶来.某一刻,在观测站B处观测到汽车与B处相距31km,在10分钟后观测到汽车与B处相距21km.若汽车速度为120km/h,求该汽车还需多长时间才能到达城A?
查看答案
如图,已知四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.

manfen5.com 满分网 查看答案
在数列{an}中,a1=1,且对任意的n∈N+,都有manfen5.com 满分网
(1)求证:数列manfen5.com 满分网是等差数列;
(2)设数列{an}的前n项和为Sn,求证:对任意的n∈N+,Sn+1-4an都为定值.
查看答案
请考生从以下三个小题中任选一个作答,若多选,则按所选的第一题计分.
(1)若不等式|x-1|+|x-m|<2m的解集为∅,则m的取值范围为   
(2)直线3x-4y-1=0被曲线manfen5.com 满分网(θ为参数)所截得的弦长为   
(3)若直角△ABC的内切圆与斜边AB相切于点D,且AD=1,BD=2,则△ABC的面积为    查看答案
在直角坐标平面内,由不等式组manfen5.com 满分网所表示的平面区域的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.