满分5 > 高中数学试题 >

如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M...

如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

manfen5.com 满分网
(I)法一,连接AB′、AC′,说明三棱柱ABC-A′B′C′为直三棱柱,推出MN∥AC′,然后证明MN∥平面A′ACC′; 法二,取A′B′的中点P,连接MP、NP,推出MP∥平面A′ACC′,PN∥平面A′ACC′,然后通过平面与平面平行证MN∥平面A′ACC′. (II)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,设AA′=1,推出A,B,C,A′,B′,C′坐标求出M,N,设=(x1,y1,z1)是平面A′MN的法向量,通过,取,设=(x2,y2,z2)是平面MNC的法向量,由,取,利用二面角A'-MN-C为直二面角,所以,解λ. (I)证明:连接AB′、AC′, 由已知∠BAC=90°,AB=AC, 三棱柱ABC-A′B′C′为直三棱柱, 所以M为AB′中点, 又因为N为B′C′的中点, 所以MN∥AC′, 又MN⊄平面A′ACC′, 因此MN∥平面A′ACC′; 法二:取A′B′的中点P,连接MP、NP, M、N分别为A′B、B′C′的中点, 所以MP∥AA′,NP∥A′C′, 所以MP∥平面A′ACC′,PN∥平面A′ACC′, 又MP∩NP=P,因此平面MPN∥平面A′ACC′, 而MN⊂平面MPN, 因此MN∥平面A′ACC′. (II)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,如图, 设AA′=1,则AB=AC=1,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1). 所以M(),N(), 设=(x1,y1,z1)是平面A′MN的法向量, 由,得, 可取, 设=(x2,y2,z2)是平面MNC的法向量, 由,得, 可取, 因为二面角A'-MN-C为直二面角, 所以, 即-3+(-1)×(-1)+λ2=0, 解得λ=.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.
(Ⅰ)求cosB的值;
(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.
查看答案
已知正三棱锥P-ABC,点P,A,B,C都在半径为manfen5.com 满分网的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为    查看答案
已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为    查看答案
已知等比数列{an}为递增数列,且manfen5.com 满分网,则数列an的通项公式an=    查看答案
manfen5.com 满分网一个几何体的三视图如图所示,则该几何体的表面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.