满分5 > 高中数学试题 >

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆...

manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
(1)可以先由平面ABCD⊥平面ABEF以及CB⊥AB证得CB⊥平面ABEF,⇒AF⊥CB.又因为AB为圆O的直径⇒AF⊥BF,就可证:AF⊥平面CBF; (2)取DF的中点为N,利用MNAO⇒MNAO为平行四边形⇒OM∥AN即可.既用线线平行来证线面平行. (3)先把两个锥体的体积套公式求出来,就可求出其体积之比. 【解析】 (1)证明:由平面ABCD⊥平面ABEF,CB⊥AB, 平面ABCD∩平面ABEF=AB, 得CB⊥平面ABEF, 而AF⊂平面ABEF,所以AF⊥CB(2分) 又因为AB为圆O的直径, 所以AF⊥BF,(3分) 又BF∩CB=B,所以AF⊥平面CBF(4分) (2)证明:设DF的中点为N,连接AN,MN 则MNCD,又AOCD 则MNAO,所以四边形MNAO为平行四边形,(6分) 所以OM∥AN,又AN⊂平面DAF,OM⊄平面DAF, 所以OM∥平面DAF.(8分) (3)过点F作FG⊥AB于G,因为平面ABCD⊥平面ABEF, 所以FG⊥平面ABCD,所以(9分) 因为CB⊥平面ABEF, 所以(11分) 所以VF-ABCD:VF-CBE=4:1.(12分)
复制答案
考点分析:
相关试题推荐
已知钝角△ABC中,角A、B、C的对边分别为a、b、c,且有manfen5.com 满分网
(1)求角B的大小;
(2)设向量manfen5.com 满分网,且manfen5.com 满分网,求tmanfen5.com 满分网的值.
查看答案
manfen5.com 满分网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
查看答案
当实数x满足约束条件manfen5.com 满分网(其中k为小于零的常数)时,manfen5.com 满分网的最小值为2,则实数k的值是     查看答案
manfen5.com 满分网已知某几何三视图如图所示,则该几何体的表面积等于    查看答案
设等比数列{an}的公比q=2,前n项和为Sn,若S4=1,则S8=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.