已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
得到曲线C′,设曲线C′上任一点为M(x,y),求
的最小值.
考点分析:
相关试题推荐
选做题:几何证明选讲
如图,ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,延长CF交AB于E.
(1)求证:E是AB的中点;
(2)求线段BF的长.
查看答案
在平面直角坐标系xoy中,已知三点A(-1,0),B(1,0),C(-1,
),以A、B为焦点的椭圆经过点C.
(I)求椭圆的方程;
(II)设点D(0,1),是否存在不平行于x轴的直线l与椭圆交于不同两点M、N,使
?若存在,求出直线l斜率的取值范围;若不存在,请说明理由;
(III)若对于y轴上的点P(0,n)(n≠0),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使
,试求n的取值范围.
查看答案
已知函数
.
(I)若m=1,判断函数在定义域内的单调性;
(II)若函数在(1,e)内存在极值,求实数m的取值范围.
查看答案
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为V
F-ABCD,V
F-CBE,求V
F-ABCD:V
F-CBE.
查看答案
已知钝角△ABC中,角A、B、C的对边分别为a、b、c,且有
,
(1)求角B的大小;
(2)设向量
,且
,求t
的值.
查看答案