满分5 > 高中数学试题 >

设函数f(x)=x2-mlnx,h(x)=x2-x+a (Ⅰ) 当a=0时,f(...

设函数f(x)=x2-mlnx,h(x)=x2-x+a
(Ⅰ) 当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(Ⅱ) 当m=2时,若函数g(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
(I)由a=0,我们可以由f(x)≥h(x)在(1,+∞)上恒成立,得到-mlnx≥-x,即在(1,+∞)上恒成立,构造函数,求出函数的最小值,即可得到实数m的取值范围; (Ⅱ) 当m=2时,我们易求出函数g(x)=f(x)-h(x)的解析式,由方程的根与对应函数零点的关系,易转化为x-2lnx=a,在[1,3]上恰有两个相异实根,利用导数分析函数的单调性,然后根据零点存在定理,构造关于a的不等式组,解不等式组即可得到答案. 【解析】 (I)由a=0,f(x)≥h(x)可得-mlnx≥-x,即 记,则f(x)≥h(x)在(1,+∞)上恒成立等价于m≤φ(x)min.(3分) 求得(4分) 当x∈(1,e)时;φ′(x)<0;当x∈(e,+∞)时,φ′(x)>0(5分) 故φ(x)在x=e处取得极小值,也是最小值, 即φ(x)min=φ(e)=e,故m≤e.(6分) (II)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a, 在[1,3]上恰有两个相异实根.(7分) 令g(x)=x-2lnx,则(8分) 当x∈[1,2)时,g′(x)<0,当x∈(2,3]时,g′(x)>0 g(x)在[1,2]上是单调递减函数,在(2,3]上是单调递增函数. 故g(x)min=g(2)=2-2ln2(10分) 又g(1)=1,g(3)=3-2ln3 ∵g(1)>g(3), ∴只需g(2)<a≤g(3),(12分) 故a的取值范围是(2-2ln2,3-2ln3](13分)
复制答案
考点分析:
相关试题推荐
已知f(x)是定义域为R的奇函数,当a∈R时f(a)+f(a-2)=f(0)恒成立,则下列结论:
(1)f(x+2)=f(-x);
(2)f(-6)=0;
(3)f(x)的图象关于直线x=0对称;
(4)f(2-2x)是周期为2的周期函数.
其中正确结论的序号是    查看答案
数列{manfen5.com 满分网}的前n项和是Sn,使Sn<T恒成立的最小正数T是    查看答案
函数manfen5.com 满分网的值域是    查看答案
已知命题P:manfen5.com 满分网,则命题的否定¬P是:    .P的一个充分不必要条件是:    查看答案
已知f(x)=manfen5.com 满分网的反函数是f-1(x),函数y=g(x)的图象与y=f-1(x+1)的图象关于直线y=x对称,且g(3)=manfen5.com 满分网则实数a的值是( )
A.1
B.2
C.-1
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.