满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的...

manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
(1)PA=PD,连BD,四边形ABCD菱形,Q为 AD中点,证明平面PAD内的直线AD,垂直平面PQB内的两条相交直线BQ,PQ, 即可证明平面PQB⊥平面PAD; (2)连AC交BQ于N,交BD于O,点M在线段PC上,PM=tPC,实数t=的值,说明PA∥平面MQB,利用PA∥MN, 说明三角形相似,求出t=. 【解析】 (1)连BD,四边形ABCD菱形∵AD=AB,∠BAD=60° ∴△ABD是正三角形,Q为 AD中点 ∴AD⊥BQ ∵PA=PD,Q为 AD中点AD⊥PQ 又BQ∩PQ=Q∴AD⊥平面PQB,AD⊂平面PAD ∴平面PQB⊥平面PAD (2)当t=时,使得PA∥平面MQB, 连AC交BQ于N,交BD于O, 则O为BD的中点,又∵BQ为△ABD边AD上中线, ∴N为正三角形ABD的中心, 令菱形ABCD的边长为a,则AN=a,AC=a. ∴PA∥平面MQB,PA⊂平面PAC,平面PAC∩平面MQB=MN ∴PA∥MN 即:PM=PC,t=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.
查看答案
已知函数f(x)=ax-x4,x∈[manfen5.com 满分网,1],A、B是其图象上不同的两点.若直线AB的斜率k总满足manfen5.com 满分网≤k≤4,则实数a的值是    查看答案
如图,在正方形ABCD中,已知AB=2,M为BC的中点,若N为正方形内(含边界)任意一点,则manfen5.com 满分网的最大值是   
manfen5.com 满分网 查看答案
设p:函数f(x)=|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“¬p”是真命题,“q”也是真命题,求实数a的取值范围.
查看答案
manfen5.com 满分网如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.