满分5 > 高中数学试题 >

设a>0,函数f(x)=x2+a|lnx-1|. (1)当a=1时,求曲线y=f...

设a>0,函数f(x)=x2+a|lnx-1|.
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x∈[1,+∞)时,求函数f(x)的最小值.
(1)将a=1代入,对函数f(x)进行求导得到切线的斜率=f'(1),切点为(1,2),从而得到切线方程. (2)分x≥e和x<e两种情况讨论.分别对函数f(x)进行求导,根据导函数的正负判断出函数f(x)的单调性后可得到答案. 解(1)当a=1时,f(x)=x2+|lnx-1| 令x=1得f(1)=2,f'(1)=1,所以切点为(1,2),切线的斜率为1, 所以曲线y=f(x)在x=1处的切线方程为:x-y+1=0. (2)①当x≥e时,f(x)=x2+alnx-a,(x≥e) ∵a>0, ∴f(x)>0恒成立. ∴f(x)在[e,+∞)上增函数. 故当x=e时,ymin=f(e)=e2 ②当1≤x<e时,f(x)=x2-alnx+1, (1≤x<e) (i)当,即0<a≤2时,f'(x)在x∈(1,e)时为正数, 所以f(x)在区间[1,e)上为增函数. 故当x=1时,ymin=1+a,且此时f(1)<f(e) (ii)当,即2<a<2e2时, f'(x)在时为负数,在间时为正数 所以f(x)在区间上为减函数,在上为增函数 故当时,, 且此时 (iii)当;即a≥2e2时, f'(x)在x∈(1,e)时为负数, 所以f(x)在区间[1,e]上为减函数, 当x=e时,ymin=f(e)=e2. 综上所述,当a≥2e2时,f(x)在x≥e时和1≤x≤e时的最小值都是e2. 所以此时f(x)的最小值为f(e)=e2; 当2<a<2e2时,f(x)在x≥e时的最小值为, 而, 所以此时f(x)的最小值为. 当0<a≤2时,在x≥e时最小值为e2,在1≤x<e时的最小值为f(1)=1+a, 而f(1)<f(e),所以此时f(x)的最小值为f(1)=1+a 所以函数y=f(x)的最小值为
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xoy中,已知抛物线y2=2px横坐标为4的点到该抛物线的焦点的距离为5.
(1)求抛物线的标准方程;
(2)设点C是抛物线上的动点,若以C为圆心的圆在y轴上截得的弦长为4,求证:圆C过定点.
查看答案
已知函数f(x)=2cos2x+manfen5.com 满分网sinxcosx.
(1)求函数f(x)定义在manfen5.com 满分网上的值域.
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA的值.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
查看答案
manfen5.com 满分网某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.
查看答案
已知函数f(x)=ax-x4,x∈[manfen5.com 满分网,1],A、B是其图象上不同的两点.若直线AB的斜率k总满足manfen5.com 满分网≤k≤4,则实数a的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.