满分5 > 高中数学试题 >

如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC...

如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BED⊥平面SAC.

manfen5.com 满分网
(1)连接OE,当E为侧棱SC的中点时,OE为△SAC的中位线,所以SA∥OE,由此能够证明SA∥平面BDE. (2)因为 SB=SD,O是BD中点,所以BD⊥SO,因为四边形ABCD是正方形,所以BD⊥AC,因为AC∩SO=O,所以BD⊥平面SAC.由此能够证明平面BDE⊥平面SAC. (本小题满分12分) 证明:(1)连接OE,当E为侧棱SC的中点时,OE为△SAC的中位线, 所以SA∥OE,(3分) 因为SA⊄平面BDE,OE⊂平面BDE, 所以SA∥平面BDE.(5分) (2)因为SB=SD,O是BD中点, 所以BD⊥SO,(7分) 又因为四边形ABCD是正方形,所以BD⊥AC,(9分) 因为AC∩SO=O,所以BD⊥平面SAC.(11分) 又因为BD⊂平面BDE, 所以平面BDE⊥平面SAC.(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且manfen5.com 满分网
(1)试求{an}的通项公式;
(2)若manfen5.com 满分网,试求数列{bn}的前n项和Tn
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
对大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网….仿此,若m3的“分裂数”中有一个是59,则m的值为    查看答案
若实数x,y满足manfen5.com 满分网则S=2x+y-1的最大值为    查看答案
若直线y=kx+1被圆x2+y2-2x-3=0截得的弦最短,则实数k的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.