满分5 > 高中数学试题 >

甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信...

甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲,乙两图:
manfen5.com 满分网
甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条.
乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个.
请你根据提供的信息说明:
(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.
(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大了还是缩小了?说明理由.
(3)哪一年的规模(即总产量)最大?说明理由.
(1)依据图象分别求出两个直线的函数表达式,然后算出算出第二年的每个鱼池的产量与全县鱼池的个数,两者的乘积即为第二年的总产量, (2)依次算出第一年的总产量与第六年的总产量,比较知结果. (3)构造出年总产量的函数是一个二次函数,用二次函数的最值求出年份. 【解析】 由题意可知,图甲图象经过(1,1)和(6,2)两点, 从而求得其解析式为y甲=0.2x+0.8, 图乙图象经过(1,30)和(6,10)两点. 从而求得其解析式为y乙=-4x+34. (1)当x=2时,y甲=0.2×2+0.8=1.2, y乙=-4×2+34=26, y甲×y乙=1.2×26=31.2. 所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条. (2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规划比第1年缩小了. (3)设当第m年时的规模,即总出产是量为n, 那么n=y甲•y乙=(0.2m+0.8)(-4m+34) =-0.8m2+3.6m+27.2 =-0.8(m2-4.5m-34) =-0.8(m-2.25)2+31.25 因此,当m=2时,n最大值为31.2. 即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条.
复制答案
考点分析:
相关试题推荐
在△ABC中,sin(C-A)=1,sinB=manfen5.com 满分网
(I)求sinA的值;
(II)设AC=manfen5.com 满分网,求△ABC的面积.
查看答案
(几何证明选讲选做题)如图,过点D做圆的切线与圆切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=   
manfen5.com 满分网 查看答案
(坐标系与参数方程选做题)以极坐标系中的点manfen5.com 满分网为圆心,2为半径的圆的直角坐标方程是    查看答案
已知点A(1,-1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是     查看答案
已知变量x,y满足约束条件manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.