如图,PO⊥ABCD,点O在AB上,EA∥PO,四边形ABCD为直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=
CD
(1)求证:BC⊥平面ABPE;
(2)直线PE上是否存在点M,使DM∥平面PBC,若存在,求出点M;若不存在,说明理由.
考点分析:
相关试题推荐
甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲,乙两图:
甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条.
乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个.
请你根据提供的信息说明:
(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.
(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大了还是缩小了?说明理由.
(3)哪一年的规模(即总产量)最大?说明理由.
查看答案
在△ABC中,sin(C-A)=1,sinB=
.
(I)求sinA的值;
(II)设AC=
,求△ABC的面积.
查看答案
(几何证明选讲选做题)如图,过点D做圆的切线与圆切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=
.
查看答案
(坐标系与参数方程选做题)以极坐标系中的点
为圆心,2为半径的圆的直角坐标方程是
.
查看答案
已知点A(1,-1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是
.
查看答案