根据平面中的某些性质类比推理出空间中的某些性质,一般遵循“点到线”,“线到面”,“面到体”等原则,由在平面几何中,已知“正三角形内一点到三边距离之和是一个定值”,是一个与线有关的性质,由此可以类比推出空间中一个与面有关的性质,由此即可得到答案.
【解析】
∵平面几何中,已知“正三角形内一点到三边距离之和是一个定值”,
根据平面中边的性质可类比为空间中面的性质
则我们可以将“正三角形”类比为“正四面体”(或“正六面体”,即“正方体”)
“到三边距离之和”类比为“到四(六)个面的距离之和”
故答案为:正四面体(正方体)内一点到四(六)个面的距离之和是一个定值