满分5 > 高中数学试题 >

某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能...

某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
听觉
视觉
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低751
中等183b
偏高2a1
超常211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为manfen5.com 满分网
(1)试确定a、b的值;
(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的数学期望Eξ.
(1)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10+a)人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A,事件A的概率即为,由此建立方程即可求出a,b. (2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率,方法一:可分为三类求其概率,分别为有一,二、三位能力超常的人;求出三类中所胡可能的情况;方法二:转化为求其对立事件的概率,易求. (3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,ξ的可能取值为0,1,2,3,分别求出其概率列出分布列,利用公式求出期望即可. 【解析】 (1)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10+a)人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A, 则,解得a=6. 所以b=40-(32+a)=40-38=2. 答:a的值为6,b的值为2. (2)由表格数据可知,具有听觉记忆能力或视觉记忆能力超常的学生共有8人. 方法1:记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B, 则“没有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件, 所以. 答:从这40人中任意抽取3人,其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率为. 方法2:记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B, 所以. 答:从这40人中任意抽取3人,其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率为. (3)由于从40位学生中任意抽取3位的结果数为C403,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为C24kC163-k, 所以从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为,(k=0,1,2,3)(8分)ξ的可能取值为0,1,2,3, 因为,,,, 所以ξ的分布列为 ξ 1 2 3 P 所以Eξ=0×+1×+2×+3×=. 答:随机变量ξ的数学期望为
复制答案
考点分析:
相关试题推荐
函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|≤π)在一个周期内,当manfen5.com 满分网时,y取最小值1;当manfen5.com 满分网时,y最大值3.
(I)求f(x)的解析式;
(II)求f(x)在区间manfen5.com 满分网上的最值.
查看答案
manfen5.com 满分网+manfen5.com 满分网=1上有一动点P,圆E:(x-1)2+y2=1,过圆心E任意做一条直线与圆E交于A、B两点,圆F::(x+1)2+y2=1,过圆心任意做一条直线交圆F于C、D两点,则manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网的最小值为    查看答案
已知x,y满足不等式组manfen5.com 满分网,则manfen5.com 满分网的最大值为    查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,若b2+c2=a2-bc,manfen5.com 满分网,则△ABC的面积等于    查看答案
在平面几何中,已知“正三角形内一点到三边距离之和是一个定值”,类比到空间写出你认为合适的结论:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.