满分5 > 高中数学试题 >

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(...

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)
根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案. 【解析】 A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x), ∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x); 而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x)); ∴((f°g)•h)(x)≠((f•h)°(g•h))(x) B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x)) ((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x)) ∴((f•g)°h)(x)=((f°h)•(g°h))(x) C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))), ((f°h)°(g°h))(x)=f(h(g(h(x)))) ∴((f°g)°h)(x)≠((f°h)°(g°h))(x); D、((f•g)•h)(x)=f(x)g(x)h(x), ((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x), ∴((f•g)•h)(x)≠((f•h)•(g•h))(x). 故选B.
复制答案
考点分析:
相关试题推荐
已知函数f(x)在R上满足f(1+x)=2f(1-x)-x2+3x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是( )
A.x-y-2=0
B.x-y=0
C.3x+y-2=0
D.3x-y-2=0
查看答案
已知函数f(x)=sin(2x+ϕ),其中ϕ为实数,若manfen5.com 满分网对x∈R恒成立,且manfen5.com 满分网,则f(x)的单调递增区间是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
六名学生从左至右站成一排照相留念,其中学生甲和学生乙必须相邻.在此前提下,学生甲站在最左侧且学生丙站在最右侧的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在△ABC中,内角A,B,C的对边分别是a,b,c,若manfen5.com 满分网manfen5.com 满分网,则A=( )
A.30°
B.60°
C.120°
D.150°
查看答案
如图,设D是图中所示的矩形区域,E是D内函数y=cosx图象上方的点构成的区域,向D中随机投一点,则该点落入E(阴影部分)中的概率为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.