满分5 > 高中数学试题 >

设二次函数f(x)=mx2+nx+t的图象过原点,g(x)=ax3+bx-3(x...

设二次函数f(x)=mx2+nx+t的图象过原点,g(x)=ax3+bx-3(x>0),f(x),g(x)的导函数为f′(x),g′(x),且f′(0)=0,f′(-1)=-2,f(1)=g(1),f′(1)=g′(1).
(1)求函数f(x),g(x)的解析式;
(2)求F(x)=f(x)-g(x)的极小值;
(3)是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值;若不存在,说明理由.
(1)由已知得t=0,求出导数f′(x)=2mx+n,由f′(0)=n=0,f′(-1)=-2m+n=-2,解得n=0,m=1,得出f(x)=x2f′(x)=2x,g′(x)=3ax2+b.再由条件列出关于a,b的方程,求得a,b即可写出函数f(x),g(x)的解析式; (2)F(x)=f(x)-g(x)=x3+x2-5x+3(x>0),先确定函数的定义域然后求出函数的导涵数Fˊ(x),在函数的定义域内解不等式Fˊ(x)>0和Fˊ(x)<0,即可求出函数的单调区间,然后根据极值的定义进行判定极值即可.(3)对于存在性问题,可先假设存在,即假设存在函数f(x)在点(1,1)的切线方程为y=2x-1满足条件,再利用导数,求出h(x)=-x3+5x-3-(2x-1)的最大值进行验证,若出现矛盾,则说明假设不成立,即不存在;否则存在. 【解析】 (1)由已知得t=0,f′(x)=2mx+n, 则f′(0)=n=0,f′(-1)=-2m+n=-2,从而n=0,m=1, ∴f(x)=x2f′(x)=2x,g′(x)=3ax2+b. 由f(1)=g(1),f′(1)=g′(1),得a+b-3=1,3a+b=2,解得a=-1,b=5.∴g(x)=-x3+5x-3(x>0). (2)F(x)=f(x)-g(x)=x3+x2-5x+3(x>0), 求导数得F′(x)=3x2+2x-5=(x-1)(3x+5).∴F(x)在(0,1)单调递减,在(1,+∞)单调递增,从而F(x)的极小值为F(1)=0. (3)因f(x)与g(x)有一个公共点(1,1),而函数f(x)在点(1,1)的切线方程为y=2x-1. 下面验证都成立即可. 由x2-2x+1≥0,得x2≥2x-1,知f(x)≥2x-1恒成立. 设h(x)=-x3+5x-3-(2x-1),即h(x)=-x3+3x-2(x>0), 求导数得h′(x)=-3x2+3=-3(x-1)(x+1)(x>0),∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以h(x)=-x3+5x-3-(2x-1)的最大值为h(1)=0, 所以-x3+5x-3≤2x-1恒成立. 故存在这样的实常数k和m,且k=2,m=-1.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=21,a5=9,满足an+2-2an+1+an=0(n∈N*
(1)求数列{an}的通项公式
(2)设sn=|a1|+|a2|+…|an|,求Sn
(3)若manfen5.com 满分网,数列{bn}的前n项和为Tn,是否存在最大的整数p,使得对任意(n∈N*)均有manfen5.com 满分网成立?若存在,求出p,若不存在,请说明理由.
查看答案
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a、b∈[-1,1],a+b≠0,有manfen5.com 满分网
(1)、判断函数f(x)在[-1,1]上的单调性,并证明你的结论;
(2)、若f(x)≤m2-2am+1对所有的x∈[-1,1]、a∈[-1,1]恒成立,求实数m的取值范围.
查看答案
OP是底部O不能到达的高塔,P是高塔的最高点,选择一条水平基线M,N,使得M,N,O三点在同一条直线上,在相距为d的M,N两点用测角仪测得P的仰角分别为α,β,已知测角仪高h=1.5m,试完成如下《实验报告》
manfen5.com 满分网
(要求:(1)计算两次测量值的平均值并填入表格;(2)利用α,β,d的平均值,求OP的值,写出详细的计算过程;
(3)把计算结果填入表格.(相关数据:)

题目测量底部不能到达的高塔的高度计算过程
测量数据测量项目第一次第二次平均值
α75°32′74°28′
β30°17′29°43′
d(m)59.8260.18
测量目标
结果

查看答案
等比数列{an}中,已知a2=2,a5=16
(1)求数列{an}的通项an
(2)若等差数列{bn},b1=a5,b8=a2,求数列{bn}前n项和Sn,并求Sn最大值.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)当manfen5.com 满分网时,求manfen5.com 满分网的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.