满分5 > 高中数学试题 >

已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC...

manfen5.com 满分网已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,点F为PC的中点.
(Ⅰ)求证:PA∥平面BFD;
(Ⅱ)求二面角P-BF-D的大小.
(Ⅰ)欲证PA∥平面BFD,根据直线与平面平行的判定定理可知只需证PA与平面BFD内一直线平行,连接AC,BD与AC交于点O,连接OF,根据中位线可知OF∥PA,OF⊂平面BFD,PA⊄平面BFD,满足定理所需条件; (Ⅱ)根据条件可知PA⊥AC,AC⊥BD.OF∩BD=O,满足线面垂直的判定定理,则AC⊥平面BDF,作OH⊥BF,垂足为H,连接CH,则CH⊥BF, 所以∠OHC为二面角PD⊥的平面角.在Rt△FOB中,求出OH,从而求出∠OHC的正切值,最后根据二面角C-BF-D的平面角与二面角P-BF-D的平面角互补求出所求即可. 证明:(Ⅰ)连接AC,BD与AC交于点O,连接OF. ∵ABCD是菱形,∴O是AC的中点. ∵点F为PC的中点,∴OF∥PA. ∵OF⊂平面BFD,PA⊄平面BFD,∴PA∥平面BFD. (Ⅱ)【解析】 ∵PA⊥平面ABCD,AC⊂平面ABCD,∴PA⊥AC. ∵OF∥PA,∴OF⊥AC.∵ABCD是菱形,∴AC⊥BD.∵OF∩BD=O, ∴AC⊥平面BDF. 作OH⊥BF,垂足为H,连接CH,则CH⊥BF, 所以∠OHC为二面角PD⊥的平面角.ABCDPA=AD=AC, ∴,. 在Rt△FOB中,OH=PA, ∴. ∴二面角C-BF-D的大小为 ∵二面角C-BF-D的平面角与二面角P-BF-D的平面角互补 ∴二面角P-BF-D的大小为π-
复制答案
考点分析:
相关试题推荐
某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组频数频率
(3.9,4.2]30.06
(4.2,4.5]60.12
(4.5,4.8]25x
(4.8,5.1]yz
(5.1,5.4]20.04
合计n1.00
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案
△ABC中,角A、B、C所对应的边分别为a,b,c,若manfen5.com 满分网.      
(1)求角A;
(2)若函数manfen5.com 满分网,求函数f(x)的值域.
查看答案
如果有穷数列a1,a2,a3,…,an(n∈N*)满足a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…n),则称其为“对称数列”.
(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11,则数列{bn}的各项分别是   
(2)设{Cn}是项数为2k-1(k∈N*,k>1)的“对称数列”,其中Ck,Ck+1,…,C2k-1是首项为50,公差为-4的等差数列,记{Cn}各项和和为S2k-1,则S2k-1的最大值为    查看答案
已知函数f′(x)、g′(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示,设函数h(x)=f(x)-g(x),则h(-1),h(0),h(1)的大小关系为   
manfen5.com 满分网 查看答案
某工厂和产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,已知A种型号产品共抽取了20件,那么此样本的容量n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.