满分5 > 高中数学试题 >

设函数 (Ⅰ)若函数f(x)在x=3处取得极小值是,求a、b的值; (Ⅱ)求函数...

设函数manfen5.com 满分网
(Ⅰ)若函数f(x)在x=3处取得极小值是manfen5.com 满分网,求a、b的值;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)若函数f(x)在(-1,1)上有且只有一个极值点,求实数a的取值范围.
(I)先求导函数,利用函数f(x)在x=3处取得极小值是,可得f′(3)=0,,从而可求a、b的值; (II)先求导函数,f′(x)=x2-2(a+1)x+4a=(x-2a)(x-2),比较2a与2的大小,从而进行分类讨论,进而可确定函数的单调递增区间 (Ⅲ)函数f(x)在(-1,1)上有且只有一个极值点,等价于f′(x)在(-1,1)上有且只有一个解;由(II)及零点存在定理可得,从而可确定a的取值范围. 【解析】 (I)∵f′(x)=x2-2(a+1)x+4a(3分) ∴f′(3)=9-6(a+1)+4a=0得 (4分) ∵解得:b=-4(5分) (II)∵f′(x)=x2-2(a+1)x+4a=(x-2a)(x-2) 令f′(x)=0,即x=2a或x=2.(7分) 当a>1时,2a>2,∴f′(x)>0时,x>2a或x<2,即f(x)的单调递增区间为(-∞,2)和(2a,+∞).(8分) 当a=1时,f′(x)=(x-2)2≥0,即f(x)的单调递增区间为(-∞,+∞).(9分) 当a<1时,2a<2,∴f′(x)>0时,x<2a或x>2,即f(x)的单调递增区间为(-∞,2a)和(2,+∞).(10分) (Ⅲ)由题意可得:(12分) ∴(2a-1)(2a+1)<0 ∴ ∴a的取值范围(14分)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网(其中k为非零常数).
(1)解关于x的不等式f(x)>0;
(2)若f(x)+2x≥0在(0,+∞)上恒成立,求k的范围.
查看答案
manfen5.com 满分网已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,点F为PC的中点.
(Ⅰ)求证:PA∥平面BFD;
(Ⅱ)求二面角P-BF-D的大小.
查看答案
某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组频数频率
(3.9,4.2]30.06
(4.2,4.5]60.12
(4.5,4.8]25x
(4.8,5.1]yz
(5.1,5.4]20.04
合计n1.00
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案
△ABC中,角A、B、C所对应的边分别为a,b,c,若manfen5.com 满分网.      
(1)求角A;
(2)若函数manfen5.com 满分网,求函数f(x)的值域.
查看答案
如果有穷数列a1,a2,a3,…,an(n∈N*)满足a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…n),则称其为“对称数列”.
(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11,则数列{bn}的各项分别是   
(2)设{Cn}是项数为2k-1(k∈N*,k>1)的“对称数列”,其中Ck,Ck+1,…,C2k-1是首项为50,公差为-4的等差数列,记{Cn}各项和和为S2k-1,则S2k-1的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.