满分5 > 高中数学试题 >

已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),...

已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM直线ℓ在y轴上的截距为m(m<0),设直线ℓ交椭圆于两个不同点A、B,
(1)求椭圆方程;
(2)求证:对任意的m的允许值,△ABM的内心I在定直线x=2上.

manfen5.com 满分网
(1)设出椭圆的标准方程,利用长轴长是短轴长的2倍,且经过点M(2,1),建立方程组,从而可求椭圆的方程; (2)证明△ABM的角平分线MI垂直x轴,从而内心I的横坐标等于点M的横坐标,则可得对任意的m的允许值,△ABM的内心I在定直线 x=2上. (1)【解析】 设椭圆方程为 则∵长轴长是短轴长的2倍,且经过点M(2,1), ∴ 所以,椭圆方程为(5分) (2)证明:因为直线ℓ平行于OM,且在y轴上的截距为m,又,所以直线ℓ的方程为, 由, 设A(x1,y1),B(x2,y2),则,(8分) 设直线MA、MB的斜率分别为k1、k2,则, 故===(12分) 故k1+k2=0,所以,△ABM的角平分线MI垂直x轴,因此,内心I的横坐标等于点M的横坐标,则对任意的m的允许值,△ABM的内心I在定直线 x=2上(13分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,设g(x)=x2•f'(x)(x>0)
(1)是否存在唯一实数a∈(m,m+1),使得g(a)=0,若存在,求正整数m的值;若不存在,说明理由.
(2)当x>0时,f(x)>n恒成立,求正整数n的最大值.
查看答案
已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
manfen5.com 满分网
(1)求证:BN⊥平面C1B1N;
(2)manfen5.com 满分网
(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求manfen5.com 满分网
查看答案
已知暗箱中开始有3个红球,2个白球,现每次从暗箱中取出1个球后,再将此球以及与它同色的5个球(共6个球)一起放回箱中,
(1)求第2次取出红球的概率;
(2)若取出白球得5分,取出红球得8分,设连续取球3次的得分值为ξ,求ξ的分布列和数学期望.
查看答案
已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量manfen5.com 满分网=(sinA+sinC,sinB-sinA),manfen5.com 满分网=(sinA-sinC,sinB),且manfen5.com 满分网
(1)求角C的大小;
(2)若manfen5.com 满分网,试求sin(A-B)的值.
查看答案
选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1).(不等式选讲)若不等式||x-a|-2|<1的解集是(-2,0)∪(2,4),则实数a=   
(2).(坐标系与参数方程)在极坐标系中,点M(4,manfen5.com 满分网)到直线l:ρ(2cosθ+sinθ)=4的距离d=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.