根据题意设h(x)=-+x,x∈[1,4]可求得h′(x).令h′(x)>0解得1<x<2,令h′(x)<0解得2<x<4.所以h(x)在[1,4]上先增后减.所以h(x)的最值在x=1或x=2或x=4处取得,
进而求出函数h(x)的最值即可得到答案.
【解析】
设h(x)=-+x,x∈[1,4]
所以h′(x)=,x∈[1,4]
令h′(x)>0解得1<x<2,令h′(x)<0解得2<x<4.
所以h(x)在[1,4]上先增后减.
所以h(x)的最值在x=1或x=2或x=4处取得,
h(1)=,h(2)=,h(4)=,
所以h(x)∈[,]
故答案为:.