满分5 > 高中数学试题 >

如图,椭圆C:焦点在x轴上,左、右顶点分别为A1、A,上顶点为B,抛物线C1、C...

如图,椭圆C:manfen5.com 满分网焦点在x轴上,左、右顶点分别为A1、A,上顶点为B,抛物线C1、C2分别以A、B为焦点,其顶点均为坐标原点O.C1与C2相交于直线manfen5.com 满分网上一点P.
(Ⅰ)求椭圆C及抛物线C1、C2的方程;
(Ⅱ)若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N,已知点manfen5.com 满分网,0),求manfen5.com 满分网的最小值.

manfen5.com 满分网
(Ⅰ)由题意知,A(a,0),,故抛物线C1的方程可设为y2=4ax,C2的方程为.由此能求出椭圆C:,抛物线C1:y2=16x,抛物线C2:. (Ⅱ)由直线OP的斜率为,知直线l的斜率为,设直线l方程为,由消去y,整理得,再由根的判别式和韦达定理进行求解. 【解析】 (Ⅰ)由题意知,A(a,0),故抛物线C1的方程可设为y2=4ax,C2的方程为 则,得a=4, 所以椭圆C:,抛物线C1y2=16x:,抛物线C2: (Ⅱ)由(Ⅰ)知,直线OP的斜率为,所以直线l的斜率为, 设直线l方程为 由消去y,整理得 因为直线l与椭圆C交于不同两点,所以△=128b2-20(8b2-16)>0, 解得 设M(x1,y1),N(x2,y2),则, 因为,, 所以= 因为,所以当时,取得最小值, 其最小值等于
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.
查看答案
manfen5.com 满分网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案
已知{an}是递增的等差数列,满足a2•a4=3,a1+a5=4.
(1) 求数列{an}的通项公式和前n项和公式;
(2) 设数列{bn}对n∈N*均有manfen5.com 满分网成立,求数列{bn}的通项公式.
查看答案
如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD⊥平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,且函数f(x)的最小正周期为π
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若manfen5.com 满分网,且a+c=4,求边长b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.