满分5 > 高中数学试题 >

已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足....

已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足manfen5.com 满分网
(1)求动点Q的轨迹方程;
(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使manfen5.com 满分网(O是坐标原点),若存在,求出直线MN的方程,若不存在,请说明理由.
(1)设Q(x,y),利用向量的坐标运算,结合在⊙O上即可得到点Q的轨迹方程; (2)对于存在性问题的解决方法,可假设存在.由向量关系式得E(1,1)是线段MN的中点,利用中点坐标公式及椭圆的方程式,得到直线MN的斜率值,从而求得直线的方程.结果表明存在. 【解析】 (1)设P(x,y),Q(x,y),依题意,则点D的坐标为D(x,0)(1分) ∴(2分) 又∴(4分) ∵P在⊙O上,故x2+y2=9∴(5分) ∴点Q的轨迹方程为(6分) (2)假设椭圆上存在两个不重合的两点M(x1,y1),N(x2,y2)满足,则E(1,1)是线段MN的中点,且有 又M(x1,y1),N(x2,y2)在椭圆上 ∴ 两式相减,得(12分) ∴∴直线MN的方程为4x+9y-13=0 将直线MN的方程代入椭圆方程检验得:52x2-104x-155=0则△>0有实根 ∴椭圆上存在点M、N满足,此时直线MN的方程为4x+9y-13=0(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.
(注:方差manfen5.com 满分网,其中manfen5.com 满分网为x1,x2,…xn的平均数)
查看答案
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面为直角梯形,∠BAD=90°,BC∥AD,且PA=AB=BC=1,AD=2.
(Ⅰ)设M为PD的中点,求证:CM∥平面PAB;
(Ⅱ)求侧面PAB与侧面PCD所成二面角的平面角的余弦值.

manfen5.com 满分网 查看答案
已知等比数列{an}的公比q=3,前3项和S3=manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)若函数f(x)=Asin(2x+φ)(A>0,0<φ<p<π)在manfen5.com 满分网处取得最大值,且最大值为a3,求函数f(x)的解析式.
查看答案
已知点P(x,y)是圆x2+y2=2y上的动点,则2x+y的取值范围    查看答案
已知一个正三棱锥P-ABC的主视图如图所示,若AC=BC=manfen5.com 满分网,PC=manfen5.com 满分网,则此正三棱锥的全面积为    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.