(Ⅰ)解法一:由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD;
解法二:证得AC⊥BC后,由面面垂直,得线面垂直,即证.
(Ⅱ),由高和底面积,求得三棱锥B-ACD的体积即是几何体D-ABC的体积.
【解析】
(Ⅰ)
【解法一】:在图1中,由题意知,,∴AC2+BC2=AB2,∴AC⊥BC
取AC中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC,
且平面ADC∩平面ABC=AC,DO⊂平面ACD,从而OD⊥平面ABC,
∴OD⊥BC
又AC⊥BC,AC∩OD=O,
∴BC⊥平面ACD
【解法二】:在图1中,由题意,得,∴AC2+BC2=AB2,∴AC⊥BC
∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂面ABC,∴BC⊥平面ACD
(Ⅱ)由(Ⅰ)知,BC为三棱锥B-ACD的高,且,S△ACD=×2×2=2,
所以三棱锥B-ACD的体积为:,
由等积性知几何体D-ABC的体积为:.