满分5 > 高中数学试题 >

如图中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)...

如图中,有一个是函数f(x)=manfen5.com 满分网x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网manfen5.com 满分网
求出f的导函数发现为开口向上的抛物线,由a≠0得到其图象必为第(3)个图,由图象知f′(0)=0解得a的值,即可求出f(-1) 【解析】 ∵f′(x)=x2+2ax+(a2-1), ∴导函数f′(x)的图象开口向上. 又∵a≠0,∴其图象必为第(3)个图. 由图象特征知f′(0)=0,且-a>0,∴a=-1. 故f(-1)=--1+1=-. 故选B
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是( )
A.(manfen5.com 满分网
B.(1,2)
C.(manfen5.com 满分网,1)
D.(2,3)
查看答案
若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,已知椭圆manfen5.com 满分网内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若manfen5.com 满分网
manfen5.com 满分网
(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.
查看答案
已知函数f(x)=lnx-ax2+(a-2)x.
(I)讨论函数f(x)的单调性;
(II)若f(x)在点(1,f(1))处的切线斜率为-2.
(i)求f(x)的解析式;
(ii)求证:当manfen5.com 满分网
查看答案
在四棱锥P-ABCD中,底面ABCD是菱形,AC∩BD=O.
(I)若平面PAC⊥平面ABCD,求证:PB=PD;
(II)若∠DAB=60°,PA=PC,PB=PD,AB=2,PO=1,求直线AB与平面PAD所成角的正弦值;
(III)在棱PC上是否存在点M(异于点C),使得BM∥平面PAD.若存在,求出manfen5.com 满分网的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.