满分5 > 高中数学试题 >

设函数, (1)对于任意实数x,f'(x)≥m恒成立,求m的最大值; (2)若方...

设函数manfen5.com 满分网
(1)对于任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
(1)先求函数f(x)的导数,然后求出f'(x)的最小值,使f'(x)min≥m成立即可. (2)若欲使方程f(x)=0有且仅有一个实根,只需求出函数的极大值小于零,或求出函数的极小值大于零即可. 【解析】 (1)f′(x)=3x2-9x+6=3(x-1)(x-2), 因为x∈(-∞,+∞),f′(x)≥m, 即3x2-9x+(6-m)≥0恒成立, 所以△=81-12(6-m)≤0, 得,即m的最大值为 (2)因为当x<1时,f′(x)>0; 当1<x<2时,f′(x)<0;当x>2时,f′(x)>0; 所以当x=1时,f(x)取极大值; 当x=2时,f(x)取极小值f(2)=2-a; 故当f(2)>0或f(1)<0时, 方程f(x)=0仅有一个实根、解得a<2或
复制答案
考点分析:
相关试题推荐
如图中,有一个是函数f(x)=manfen5.com 满分网x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网manfen5.com 满分网
查看答案
manfen5.com 满分网如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是( )
A.(manfen5.com 满分网
B.(1,2)
C.(manfen5.com 满分网,1)
D.(2,3)
查看答案
若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,已知椭圆manfen5.com 满分网内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若manfen5.com 满分网
manfen5.com 满分网
(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.
查看答案
已知函数f(x)=lnx-ax2+(a-2)x.
(I)讨论函数f(x)的单调性;
(II)若f(x)在点(1,f(1))处的切线斜率为-2.
(i)求f(x)的解析式;
(ii)求证:当manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.