满分5 > 高中数学试题 >

设函数x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,...

设函数manfen5.com 满分网x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
(1),易得函数在所求点的斜率. (2)当f′(x)≥0,函数单增,f′(x)≤0时单减,令f′(x)=0的点为极值点. (3)由题意属于区间[x1,x2]的点的函数值均大于f(1),由此计算m的范围. 【解析】 (1)当, 故f'(1)=-1+2=1,所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.(2分) (2)f'(x)=-x2+2x+m2-1,令f'(x)=0,解得x=1-m或x=1+m. ∵m>0,所以1+m>1-m,当x变化时,f'(x),f(x)的变化情况如下表: ∴f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数. 函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=, 函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=.(6分) (3)由题设,, ∴方程有两个相异的实根x1,x2, 故,∵m>0 解得m,(8分) ∵x1<x2,所以2x2>x1+x2=3, 故x2>.(10分) ∵对任意的x∈[x1,x2],x-x1≥0,x-x2≤0, 则,又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0, 于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是f(1)=m2-<0, 解得, ∵由上m, 综上,m的取值范围是(,).(14分)
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网
(1)对于任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
查看答案
如图中,有一个是函数f(x)=manfen5.com 满分网x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网manfen5.com 满分网
查看答案
manfen5.com 满分网如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是( )
A.(manfen5.com 满分网
B.(1,2)
C.(manfen5.com 满分网,1)
D.(2,3)
查看答案
若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,已知椭圆manfen5.com 满分网内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若manfen5.com 满分网
manfen5.com 满分网
(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.