满分5 > 高中数学试题 >

已知函数f(x)=x3+(1-a) x2-a(a+2)x+b(a,b∈R). (...

已知函数f(x)=x3+(1-a) x2-a(a+2)x+b(a,b∈R).
(I)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;
(Ⅱ)若函数f(x)在区间(-1,1)上不单调,求a的取值范围.
(Ⅰ)先求导数:f'(x)=3x2+2(1-a)x-a(a+2),再利用导数求出在x=-1处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b等式解之,从而问题解决. (Ⅱ)根据题中条件:“函数f(x)在区间(-1,1)不单调,”等价于“导函数f'(x)在(-1,1)既能取到大于0的实数,又能取到小于0的实数”,由于导函数是一个二次函数,有两个根,故问题可以转化为到少有一根在在区间(-1,1)内,先求两根,再由以上关系得到参数的不等式,解出两个不等式的解集,求其并集即可; 解析:(Ⅰ)由题意得f'(x)=3x2+2(1-a)x-a(a+2) 又, 解得b=0,a=-3或a=1 (Ⅱ)函数f(x)在区间(-1,1)不单调,等价于 导函数f'(x)[是二次函数],在(-1,1有实数根但无重根. ∵f'(x)=3x2+2(1-a)x-a(a+2)=(x-a)[3x+(a+2)], 令f'(x)=0得两根分别为x=a与x= 若a=即a=-时,此时导数恒大于等于0,不符合题意, 当两者不相等时即a≠-时 有a∈(-1,1)或者∈(-1,1) 解得a∈(-5,1)且a≠- 综上得参数a的取值范围是(-5,-)∪(-,1)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x2+ln x-1.
(1)求函数f(x)在区间[1,e](e为自然对数的底)上的最大值和最小值;
(2)求证:在区间(1,+∞)上,函数f(x)的图象在函数g(x)=manfen5.com 满分网x3的图象的下方;
(3)求证:[f′(x)]n-f′(xn)≥2n-2 (n∈N*).
查看答案
设函数manfen5.com 满分网x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
查看答案
设函数manfen5.com 满分网
(1)对于任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
查看答案
如图中,有一个是函数f(x)=manfen5.com 满分网x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网manfen5.com 满分网
查看答案
manfen5.com 满分网如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是( )
A.(manfen5.com 满分网
B.(1,2)
C.(manfen5.com 满分网,1)
D.(2,3)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.