满分5 > 高中数学试题 >

设函数f(x)=, (1)求函数f(x)的单调区间; (2)若k>0,求不等式f...

设函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
(1)对函数f(x)进行求导,当导数大于0时是单调递增区间,当导数小于0时是原函数的单调递减区间. (2)将f'(x)代入不等式即可求解. 【解析】 (1)∵f(x)= ∴ 由f'(x)=0,得x=1, 因为当x<0时,f'(x)<0; 当0<x<1时,f'(x)<0;当x>1时,f'(x)>0; 所以f(x)的单调增区间是:[1,+∝);单调减区间是:(-∞,0),(0,1] (2)由f'(x)+k(1-x)f(x)==>0, 得:(x-1)(kx-1)<0, 故:当0<k<1时,解集是:{x|1<x<}; 当k=1时,解集是:φ; 当k>1时,解集是:{x|<x<1}.
复制答案
考点分析:
相关试题推荐
设Sn是等差数列{an}前n项的和.已知manfen5.com 满分网manfen5.com 满分网的等比中项为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的等差中项为1.求等差数列{an}的通项an
查看答案
设a1=2,manfen5.com 满分网,bn=manfen5.com 满分网,n∈N+,则数列{bn}的通项公式bn=    查看答案
已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 008)+f(2 009)的值为    查看答案
等差数列{an}中,若S20=50,S50=20,则S70=    查看答案
已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前项和,则使得Sn达到最大值的是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.