满分5 > 高中数学试题 >

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修)...

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网
(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式; (2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值. 【解析】 (Ⅰ)设矩形的另一边长为am, 则y=45x+180(x-2)+180•2a=225x+360a-360. 由已知ax=360,得, 所以. (II)因为x>0,所以, 所以,当且仅当时,等号成立. 即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足,manfen5.com 满分网,n∈N×
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.
查看答案
设函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
查看答案
设Sn是等差数列{an}前n项的和.已知manfen5.com 满分网manfen5.com 满分网的等比中项为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的等差中项为1.求等差数列{an}的通项an
查看答案
设a1=2,manfen5.com 满分网,bn=manfen5.com 满分网,n∈N+,则数列{bn}的通项公式bn=    查看答案
已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 008)+f(2 009)的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.