满分5 > 高中数学试题 >

已知点(1,)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{...

已知点(1,manfen5.com 满分网)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=manfen5.com 满分网+manfen5.com 满分网(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{manfen5.com 满分网}前n项和为Tn,问Tnmanfen5.com 满分网的最小正整数n是多少?
(1)先根据点(1,)在f(x)=ax上求出a的值,从而确定函数f(x)的解析式,再由等比数列{an}的前n项和为f(n)-c求出数列{an}的公比和首项,得到数列{an}的通项公式;由数列{bn}的前n项和Sn满足Sn-Sn-1=可得到数列{ }构成一个首项为1公差为1的等差数列,进而得到数列{ }的通项公式,再由bn=Sn-Sn-1可确定{bn}的通项公式. (2)先表示出Tn再利用裂项法求得的表达式Tn,根据Tn>求得n. 【解析】 (1)由已知f(1)=a=,∴f(x)=,等比数列{an}的前n项和为f(n)-c=c, ∴a1=f(1)=-c,a2=[f(2)-c]-[f(1)-c]=-,a3=[f(3)-c]-[f(2)-c]=- 数列{an}是等比数列,应有=q,解得c=1,q=. ∴首项a1=f(1)=-c= ∴等比数列{an}的通项公式为=. (2)∵Sn-Sn-1==(n≥2) 又bn>0,>0,∴=1; ∴数列{ }构成一个首项为1,公差为1的等差数列, ∴=1+(n-1)×1=n                 ∴Sn=n2  当n=1时,b1=S1=1, 当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1 又n=1时也适合上式, ∴{bn}的通项公式bn=2n-1. (2)== ∴ == 由,得,, 故满足的最小正整数为112.
复制答案
考点分析:
相关试题推荐
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网 查看答案
已知数列{an}满足,manfen5.com 满分网,n∈N×
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.
查看答案
设函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
查看答案
设Sn是等差数列{an}前n项的和.已知manfen5.com 满分网manfen5.com 满分网的等比中项为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的等差中项为1.求等差数列{an}的通项an
查看答案
设a1=2,manfen5.com 满分网,bn=manfen5.com 满分网,n∈N+,则数列{bn}的通项公式bn=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.