满分5 > 高中数学试题 >

已知F1,F2为椭圆的左、右焦点,P是椭圆上一点. (1)求|PF1|•|PF2...

已知F1,F2为椭圆manfen5.com 满分网的左、右焦点,P是椭圆上一点.
(1)求|PF1|•|PF2|的最大值;
(2)若∠F1PF2=60°且△F1PF2的面积为manfen5.com 满分网,求b的值.
(1)利用椭圆定义知|PF1|+|PF2|为定值2a,再利用均值定理求积|PF1|•|PF2|的最大值即可;、 (2)先根据椭圆的方程求得c,进而求得|F1F2|,设出|PF1|=t1,|PF2|=t2,利用余弦定理可求得t1t2的值,最后利用三角形面积公式求解即可求出b值. 【解析】 (1)∵P点在椭圆上,∴|PF1|+|PF2|=|2a=20, ∵|PF1|>0,|PF2|>0,∴|PF1|•|PF2|≤=100, ∴|PF1|•|PF2|有最大值100. (2)∵a=10,|F1F2|=2c. 设|PF1|=t1,|PF2|=t2, 则根据椭圆的定义可得:t1+t2=20①, 在△F1PF2中,∠F1PF2=60°, 所以根据余弦定理可得:t12+t22-2t1t2•cos60°=4c2②, 由①2-②得3t1•t2=400-4c2, 所以由正弦定理可得:=. 所以c=6, ∴b=8.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C的对边分别为a,b,c.已知向量manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=-1,
(Ⅰ) 求cosA的值;
(Ⅱ) 若manfen5.com 满分网,b=2,求c的值.
查看答案
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(Ⅰ)求证:PA⊥EF;
(Ⅱ)求证:FG∥平面PAB.

manfen5.com 满分网 查看答案
已知等差数列{an}的前n项和为Sn,且a3=5,S6=36.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
已知函数f'(x)、g'(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示:
①若f(1)=1,则f(-1)=   
②设函数h(x)=f(x)-g(x),则h(-1),h(0),h(1)的大小关系为    .(用“<”连接)
manfen5.com 满分网 查看答案
manfen5.com 满分网图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是manfen5.com 满分网,则此长方体的体积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.