由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围
【解析】
设C(a,b),(a>0,b>0)
由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2
即(a-1)2+(b-1)2=(a-1)2+(b-3)2=4
∴b=2,a=1+即C(1+,2)
则此时直线AB的方程x=1,AC的方程为y-1=(x-1),直线BC的方程为y-3=()(x-1)
当直线x-y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1-
∴
故选A