满分5 > 高中数学试题 >

设函数f(x)=ex-ax-2 (Ⅰ)求f(x)的单调区间 (Ⅱ)若a=1,k为...

设函数f(x)=ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值.
(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间; (II)由题设条件结合(I),将不等式,(x-k) f´(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值; 【解析】 (I)函数f(x)=ex-ax-2的定义域是R,f′(x)=ex-a, 若a≤0,则f′(x)=ex-a≥0,所以函数f(x)=ex-ax-2在(-∞,+∞)上单调递增. 若a>0,则当x∈(-∞,lna)时,f′(x)=ex-a<0;当x∈(lna,+∞)时,f′(x)=ex-a>0;所以,f(x)在(-∞,lna)单调递减,在(lna,+∞)上单调递增. (II)由于a=1,所以,(x-k) f´(x)+x+1=(x-k) (ex-1)+x+1 故当x>0时,(x-k) f´(x)+x+1>0等价于k<(x>0)① 令g(x)=,则g′(x)= 由(I)知,函数h(x)=ex-x-2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=ex-x-2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2) 当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3) 由于①式等价于k<g(α),故整数k的最大值为2
复制答案
考点分析:
相关试题推荐
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为manfen5.com 满分网;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=manfen5.com 满分网AA1,D是棱AA1的中点.
(I) 证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

manfen5.com 满分网 查看答案
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n14151617181920
频数10201616151310
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
查看答案
已知a,b,c分别为△ABC三个内角A,B,C的对边,manfen5.com 满分网
(1)求A;
(2)若a=2,△ABC的面积为manfen5.com 满分网;求b,c.
查看答案
设函数f(x)=manfen5.com 满分网的最大值为M,最小值为m,则M+m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.