满分5 > 高中数学试题 >

设函数f(x)=ax+cosx,x∈[0,π]. (Ⅰ)讨论f(x)的单调性; ...

设函数f(x)=ax+cosx,x∈[0,π].
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设f(x)≤1+sinx,求a的取值范围.
(Ⅰ)求导函数,可得f'(x)=a-sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间; (Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ-1≤1,可得a≤,构造函数g(x)=sinx-(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论. 【解析】 (Ⅰ)求导函数,可得f'(x)=a-sinx,x∈[0,π],sinx∈[0,1]; 当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增; 当0<a<1时,由f'(x)=0得x1=arcsina,x2=π-arcsina 当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增 当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减 当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增 当x∈[0,arcsina]时,单调递增,当x∈[arcsina,π]时,单调递减; (Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ-1≤1,∴a≤. 令g(x)=sinx-(0≤x),则g′(x)=cosx- 当x时,g′(x)>0,当时,g′(x)<0 ∵,∴g(x)≥0,即(0≤x), 当a≤时,有 ①当0≤x时,,cosx≤1,所以f(x)≤1+sinx; ②当时,=1+≤1+sinx 综上,a≤.
复制答案
考点分析:
相关试题推荐
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.
查看答案
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,manfen5.com 满分网,PA=2,E是PC上的一点,PE=2EC.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.

manfen5.com 满分网 查看答案
△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求C.
查看答案
三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为    查看答案
manfen5.com 满分网的展开式中第3项与第7项的二项式系数相等,则该展开式中manfen5.com 满分网的系数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.