满分5 > 高中数学试题 >

已知函数f(x)满足; (1)求f(x)的解析式及单调区间; (2)若,求(a+...

已知函数f(x)满足manfen5.com 满分网
(1)求f(x)的解析式及单调区间;
(2)若manfen5.com 满分网,求(a+1)b的最大值.
(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间; (2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值 【解析】 (1) 令x=1得:f(0)=1 ∴令x=0,得f(0)=f'(1)e-1=1解得f'(1)=e 故函数的解析式为 令g(x)=f'(x)=ex-1+x ∴g'(x)=ex+1>0,由此知y=g(x)在x∈R上单调递增 当x>0时,f'(x)>f'(0)=0;当x<0时,有 f'(x)<f'(0)=0得: 函数的单调递增区间为(0,+∞),单调递减区间为(-∞,0) (2)得h′(x)=ex-(a+1) ①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→-∞时,h(x)→-∞与h(x)≥0矛盾 ②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1) 得:当x=ln(a+1)时,h(x)min=(a+1)-(a+1)ln(a+1)-b≥0,即(a+1)-(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2-(a+1)2ln(a+1),(a+1>0) 令F(x)=x2-x2lnx(x>0),则F'(x)=x(1-2lnx) ∴ 当时, 即当时,(a+1)b的最大值为
复制答案
考点分析:
相关试题推荐
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为manfen5.com 满分网;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案
如图,直三棱柱ABC-A1B1C1中,manfen5.com 满分网,D是棱AA1的中点,DC1⊥BD
(1)证明:DC1⊥BC
(2)求二面角A1-BD-C1的大小.

manfen5.com 满分网 查看答案
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n14151617181920
频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
查看答案
已知a,b,c分别为△ABC三个内角A,B,C的对边,manfen5.com 满分网
(1)求A;
(2)若a=2,△ABC的面积为manfen5.com 满分网;求b,c.
查看答案
数列{an}满足manfen5.com 满分网,则{an}的前60项和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.