选修4-4;坐标系与参数方程
已知曲线C
1的参数方程是
,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C
2的坐标系方程是ρ=2,正方形ABCD的顶点都在C
2上,且A,B,C,D依逆时针次序排列,点A的极坐标为
(1)求点A,B,C,D的直角坐标;
(2)设P为C
1上任意一点,求|PA|
2+|PB|
2+|PC|
2+|PD|
2的取值范围.
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD~△GBD.
查看答案
已知函数f(x)满足
;
(1)求f(x)的解析式及单调区间;
(2)若
,求(a+1)b的最大值.
查看答案
设抛物线C:x
2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为
;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案
如图,直三棱柱ABC-A
1B
1C
1中,
,D是棱AA
1的中点,DC
1⊥BD
(1)证明:DC
1⊥BC
(2)求二面角A
1-BD-C
1的大小.
查看答案
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
查看答案