满分5 > 高中数学试题 >

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+c=b. (1)...

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
(1)首先利用正弦定理化边为角,可得2RsinAcosC+2RsinC=2RsinB,然后利用诱导公式及两角和与差的正弦公式化简可得cosA=,进而求出∠A. (2)首先利用正弦定理化边为角,可得l=1+,然后利用诱导公式将sinC转化为sin(A+B),进而由两角和与差的正弦公式化简可得l=1+2sin(B+),从而转化成三角函数求值域问题求解;或者利用余弦定理结合均值不等式求解. 【解析】 (1)∵accosC+c=b, 由正弦定理得2RsinAcosC+2RsinC=2RsinB, 即sinAcosC+sinC=sinB, 又∵sinB=sin(A+C)=sinAcosC+cosAsinC, ∴sinC=cosAsinC, ∵sinC≠0, ∴, 又∵0<A<π, ∴. (2)由正弦定理得:b==,c=, ∴l=a+b+c =1+(sinB+sinC) =1+(sinB+sin(A+B)) =1+2(sinB+cosB) =1+2sin(B+), ∵A=,∴B,∴B+,∴, 故△ABC的周长l的取值范围为(2,3]. (2)另【解析】 周长l=a+b+c=1+b+c, 由(1)及余弦定理a2=b2+c2-2bccosA, ∴b2+c2=bc+1, ∴(b+c)2=1+3bc≤1+3()2, 解得b+c≤2, 又∵b+c>a=1, ∴l=a+b+c>2, 即△ABC的周长l的取值范围为(2,3].
复制答案
考点分析:
相关试题推荐
已知下列命题命题:①椭圆manfen5.com 满分网中,若a,b,c成等比数列,则其离心率manfen5.com 满分网;②双曲线x2-y2=a2(a>0)的离心率manfen5.com 满分网且两条渐近线互相垂直;③在正方体上任意选择4个顶点,它们可能是每个面都是直角三角形的四面体的4个顶点;④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为manfen5.com 满分网.其中正确命题的序号是    查看答案
若A为抛物线manfen5.com 满分网的顶点,过抛物线焦点的直线交抛物线于B、C两点,则manfen5.com 满分网等于    查看答案
已知非零向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网,若函数manfen5.com 满分网manfen5.com 满分网在R上有极值,则<a,b>的取值范围是    查看答案
在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=    查看答案
设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].如果manfen5.com 满分网为闭函数,那么k的取值范围是( )
A.-1<k≤manfen5.com 满分网
B.manfen5.com 满分网≤k<1
C.k>-1
D.k<1
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.